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Abstract. The derivation of the exact and unique nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and
anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been
a long-standing problem in the framework of the superfield approach to the BRST formalism. These nilpo-
tent symmetry transformations are deduced for the four (3+1)-dimensional (4D) complex scalar fields,
coupled to the U(1) gauge field, in the framework of an augmented superfield formalism. This interacting
gauge theory (i.e. QED) is considered on a six (4, 2)-dimensional supermanifold parametrized by four even
spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizon-
tality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field
and the (anti-) ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covari-
ant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the
matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too.

PACS. 11.15.-q; 12.20.-m; 03.70.+k

1 Introduction

The application of the Becchi–Rouet–Stora–Tyutin
(BRST) formalism to gauge theories (endowed with the
first-class constraints in the language of Dirac’s prescrip-
tion for the classification scheme [1, 2]) stands on a firm
ground because

(i) it provides the covariant canonical quantization of
these theories [3–7],

(ii) the unitarity and the “quantum” gauge (i.e. BRST)
invariance are respected together at any arbitrary
order of perturbative computations related to a given
physical process (see, e.g., [3, 4, 8]),

(iii) its salient features are intimately connected with the
mathematical aspects of differential geometry and
cohomology (see, e.g., [9–14]), and

(iv) it has deep relations with some of the key ideas asso-
ciated with the supersymmetry.

In our present investigation, we shall touch upon some
of the issues related with the geometrical aspects of the
BRST formalism, applied to an interacting U(1) gauge
theory (i.e. QED), in the framework of the superfield
formalism [15–32].
The usual superfield approach to BRST formalism [15–

24] provides the geometrical interpretation for the con-

a e-mail: malik@bhu.ac.in

served and nilpotent (anti-) BRST charges (and the cor-
responding nilpotent and anticommuting (anti-) BRST
symmetries they generate) for the Lagrangian density
of a given 1-form (non-) Abelian gauge theory defined
on the four (3+1)-dimensional (4D) spacetime mani-
fold. The key idea in this formulation is to consider
the original 4D 1-form (non-) Abelian gauge theory on
a six (4, 2)-dimensional supermanifold parametrized by
the four spacetime (even) coordinates xµ(µ = 0, 1, 2, 3)
and a couple of Grassmannian (odd) variables θ and
θ̄ (with θ2 = θ̄2 = 0, θθ̄+ θ̄θ = 0). One constructs, espe-
cially for the 4D 1-form non-Abelian gauge theory, the
super curvature 2-form F̃ (2) = d̃Ã(1)+ Ã(1)∧ Ã(1) with the

help of the super exterior derivative d̃ (with d̃
2
= 0) and

the super 1-form connection Ã(1). This is subsequently
equated, due to the so-called horizontality condition1 [15–
24], to the ordinary 2-form curvature F (2) = dA(1)+
A(1) ∧A(1) constructed with the help of the ordinary

1 This condition has also been applied to the 2-form (A(2) =
1
2! (dx

µ∧dxν)Bµν) Abelian gauge theory where the 3-form su-

per curvature F̃ (3) = d̃Ã(2), defined on the six (4, 2)-dimen-

sional supermanifold, is equated to the ordinary 3-form F (3) =
dA(2) curvature, defined on the 4D ordinary Minkowskian
spacetime manifold. As expected, this restriction leads to the
derivation of nilpotent (anti-) BRST symmetry transform-
ations for the 2-form gauge field and the associated (anti-)
ghost fields of the theory [24].
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exterior derivative d = dxµ∂µ (with d
2 = 0) and the 1-

form ordinary connection A(1). The above restriction is
referred to as the soul-flatness condition in [7] which
amounts to setting equal to zero all the Grassmannian
components of the second-rank (anti-) symmetric cur-
vature tensor that is required in the definition of the
2-form supercurvature F̃ (2) on the six (4, 2)-dimensional
supermanifold.
The covariant reduction of the six (4, 2)-dimensional

supercurvature F̃ (2) to the 4D ordinary curvature F (2) in
the horizontality restriction (i.e. F̃ (2) = F (2)) leads to

(i) the derivation of the nilpotent (anti-) BRST symme-
try transformations for the gauge field and the (anti-)
ghost fields of the 1-form non-Abelian gauge theory,

(ii) the geometrical interpretation for the (anti-) BRST
charges as the translation generators along the Grass-
mannian directions of the supermanifold,

(iii) the geometrical meaning of the nilpotency property
which is found to be encoded in a couple of succes-
sive translations (i.e. (∂/∂θ)2 = (∂/∂θ̄)2 = 0) along
any particular Grassmannian direction (i.e. θ or θ̄) of
the supermanifold, and

(iv) the geometrical interpretation for the anticommuta-
tivity property of the BRST and anti-BRST charges
that are found to be captured by the relation (∂/∂θ)
(∂/∂θ̄)+ (∂/∂θ̄)(∂/∂θ) = 0.

It should be noted, however, that these beautiful con-
nections between the geometrical objects on the super-
manifold and the (anti-) BRST symmetries (as well as
the corresponding generators) for the ordinary fields on
the ordinary manifold remain confined only to the gauge
and (anti-) ghost fields of an interacting gauge theory.
This usual superfield formalism does not shed any light
on the nilpotent and anticommuting (anti-) BRST sym-
metry transformations associated with the matter fields of
an interacting (non-) Abelian gauge theory. It has been
a long-standing problem to find these nilpotent symme-
tries for the matter fields in the framework of superfield
formalism.
In a recent set of papers [25–32], the above usual su-

perfield formalism (endowed with the horizontality con-
dition alone) has been consistently extended to include,
in addition, the invariance of conserved quantities on the
supermanifold (see, e.g., [31] for details). It has been
also established in [25–32] that the invariance of the
conserved (super) matter currents on the (super) space-
time manifolds leads to the derivation of the consistent
set of nilpotent symmetry transformations for the mat-
ter fields of a given four dimensional interacting 1-form
(non-) Abelian gauge theory (see, e.g., [25–30]). The
salient features of the above extensions (and, in some
sense, generalizations) of the usual superfield formulation
are

(i) the geometrical interpretations for the nilpotent and
anticommuting (anti-) BRST symmetry transform-
ations (and their corresponding generators) remain
intact for all the fields (including the matter fields) of
the interacting gauge theory,

(ii) there is a mutual consistency and conformity between
the additional restrictions imposed on the superman-
ifold and the usual restriction due to the horizontality
condition, and

(iii) it has been found that these derivations of the nilpo-
tent symmetries (especially for the matter fields) are
not unique mathematically.

In a very recent paper [32], themathematical uniqueness
has been shown for the derivation of the off-shell nilpotent
and anticommuting (anti-) BRST symmetry transform-
ations for the Dirac fields coupled to theU(1) gauge field.
The purpose of our present paper is to show that the

ideas of the augmented superfield formalism, proposed
in [32], can be extended to derive the off-shell nilpotent and
anticommuting (anti-) BRST symmetry transformations
for all the fields of an interacting four (3+1)-dimensional
(4D) U(1) gauge theory where there is an interaction be-
tween the charged complex scalar fields and the photon
(i.e. QED). We demonstrate that there is a mutual consis-
tency, conformity and complementarity between

(i) the horizontality condition, and
(ii) a new restriction on the six (4, 2)-dimensional super-

manifold on which our present 4D interacting gauge
theory is considered.

The latter restriction owes its origin to the (super)
covariant derivatives on the (super) spacetime manifolds
and leads to the exact and unique derivation of the nilpo-
tent and anticommuting (anti-) BRST symmetry trans-
formations for the matter (complex scalar) fields. As is
well known [15–24], the former restriction too depends
on the (super) covariant derivatives on the (super) space-
time manifolds in a different way (than the latter) and
leads to the derivation of the nilpotent and anticommut-
ing (anti-) BRST symmetry transformations for the gauge
and (anti-) ghost fields in an exact and unique fashion. We
show, in an explicit manner, that only the gauge-invariant
versions (cf. (13) and (37) below) of the new restriction on
the supermanifold lead to the exact derivation of the nilpo-
tent symmetry transformations for the matter fields of the
present QED. The covariant versions (cf. (A.1) and associ-
ated footnote in the appendix) of the new restriction lead
to physically unacceptable solutions.
Our present investigation is interesting as well as essen-

tial primarily on three accounts.
First, it is the generalization of our previous idea for the

derivation of the unique nilpotent symmetries associated
with the Dirac fields in QED [32] to a more complicated
system of QED where the charged complex scalar fields
interact with photon. This generalization is an important
step towards putting our proposed idea of a new restric-
tion (on the six (4, 2)-dimensional supermanifold [32]) onto
a firmer footing for a new interacting gauge system where
the conserved Noether current (that couples to the U(1)
gauge field) contains the U(1) gauge field itself. It will be
noted that, for QED with the Dirac fields, the conserved
current (that couples to the U(1) gauge field) contains only
the fermionic Dirac fields (and no U(1) gauge field).
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Second, our present example of the interacting gauge
theory (QED) is more interesting, in some sense, than its
counterpart with the Dirac fields because the phenom-
ena of spontaneous symmetry breaking, Higgs mechanism,
Goldstone theorem, etc. are associated with our present
system which are not found to exist for the latter system of
interacting U(1) gauge theory.
Finally, our present system of a gauge field theory al-

lows for the inclusion of a quartic renormalizable potential
for the matter fields in the Lagrangian density (cf. (1) and
(3) below) which is U(1) gauge (as well as (anti-) BRST)
invariant. Such a kind of U(1) gauge (as well as (anti-)
BRST) invariant potential, for the matter fields, does not
exist for the QED with Dirac fields.
The contents of our present paper are organized as fol-

lows. To set up the notation and conventions for the main
body of the text, in Sect. 2, we provide a brief synop-
sis of the off-shell nilpotent (anti-) BRST symmetries for
the 4D interacting U(1) gauge theory (QED) in the La-
grangian formulation where the gauge field Aµ couples to
the Noether conserved current constructed by the com-
plex scalar fields and Aµ itself. For the sake of this paper
being self-contained, Sect. 3 deals with the derivation of
the above nilpotent symmetries for the gauge- and (anti-)
ghost fields in the framework of usual superfield formu-
lation where the horizontality condition on the six (4, 2)-
dimensional supermanifold plays a very decisive role [15–
24]. The central results of our paper are accumulated in
Sect. 4 where we derive the off-shell nilpotent symme-
tries for the complex scalar fields by exploiting a gauge-
invariant restriction on the supermanifold. A very import-
ant point, connected with this section, is discussed in an
appendix of our present paper (cf. Appendix A). Finally,
we summarize our key results, make some concluding re-
marks and point out a few promising future directions for
further investigations in Sect. 5.

2 Nilpotent (anti-) BRST symmetries:
Lagrangian formulation

To recapitulate the key points connected with the local,
covariant, continuous, anticommuting and off-shell nilpo-
tent (anti-) BRST symmetries, we focus on the Lagrangian
density of an interacting four (3+1)-dimensional2 (4D)
U(1) gauge theory which describes a dynamically closed
system of charged complex scalar fields and the photon (i.e.

2 We adopt here the conventions and notation such that
the 4D flat Minkowski metric is: ηµν = diag(+1,−1,−1,−1)
and � = ηµν∂µ∂ν = (∂0)

2− (∂i)
2, F0i = ∂0Ai−∂iA0 = Ei ≡

E, Fij = εijkBk, Bi =
1
2 εijkFjk ≡ B, (∂ ·A) = ∂0A0− ∂iAi

where E andB are the electric and magnetic fields, respectively
and εijk is the totally antisymmetric Levi–Civita tensor defined
on the 3D space sub-manifold of the 4D spacetime manifold.
Here the Greek indices, µ, ν, . . . = 0, 1, 2, 3, correspond to the
spacetime directions, and the Latin indices, i, j, k, . . .= 1, 2, 3,
stand only for the space directions on the Minkowski spacetime
manifold.

QED). The (anti-) BRST invariant version of the above La-
grangian, in the Feynman gauge, is [3–7]

LB =−
1

4
FµνFµν +(Dµφ)

∗Dµφ−V (φ∗φ)+B (∂ ·A)

+
1

2
B2− i∂µC̄∂

µC ,

≡
1

2
(E2−B2)+ (Dµφ)

∗Dµφ−V (φ∗φ)+B (∂ ·A)

+
1

2
B2− i∂µC̄∂

µC , (1)

where V (φ∗φ) is the potential describing the interaction
between the complex scalar fields φ and φ∗ and the covari-
ant derivatives on these fields, with the electric charge e,
are

Dµφ= ∂µφ+ieAµφ, (Dµφ)
∗ = ∂µφ

∗− ieAµφ
∗ . (2)

It will be noted that, in general, the potential V (φ∗φ)
can be chosen to possess a quartic renormalizable inter-
action term which turns out to be U(1) gauge invari-
ant (see, e.g. [33] for details). The Lagrangian density
LB includes the gauge fixing term (∂ ·A) through the
Nakanishi–Lautrup auxiliary field B and the Faddeev–
Popov (anti-) ghost fields (C̄) C (with C2 = C̄2 = 0, CC̄+
C̄C = 0) are required in the theory to maintain the (anti-)
BRST invariance and unitarity together at any arbi-
trary order of perturbative calculations [3, 4, 8]. In the
sense of the basic requirements of a canonical field the-
ory, the Lagrangian density LB (cf. (1)) describes a dy-
namically closed system because the quadratic kinetic
energy terms and the interaction terms for all the fields
φ, φ∗ and Aµ are present in this Lagrangian density in
a logical fashion (see, e.g., [33]). It will be noted that
the gauge field Aµ couples to the conserved matter cur-
rent Jµ ∼ [φ∗Dµφ−φ(Dµφ)∗] to provide the interaction
between

(i) the U(1) gauge field itself, and
(ii) the U(1) gauge field and matter fields (i.e. complex

scalar fields φ as well as φ∗).

This statement can be succinctly expressed by re-
expressing (1), in terms of the kinetic energy terms for φ
and φ∗, as given here:

LB =−
1

4
FµνFµν +∂µφ

∗∂µφ− ieAµ[φ
∗∂µφ−φ∂µφ

∗]

+ e2A2φ∗φ−V (φ∗φ)+B(∂ ·A)+
1

2
B2− i∂µC̄∂

µC .

(3)

The conservation of the matter current Jµ can be easily
checked by exploiting the equations of motion DµD

µφ =
−(∂V/∂φ∗), (DµDµφ)∗ =−(∂V/∂φ) derived from the La-
grangian densities (1) and/or (3). The above Lagrangian
density respects the following off-shell nilpotent (s2(a)b = 0)
and anticommuting (sbsab+ sabsb = 0) (anti-) BRST sym-
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metry transformations s(a)b
3 on the matter fields, gauge

field and the (anti-) ghost fields:

sbAµ = ∂µC , sbC = 0 , sbC̄ = iB , sbφ=−ieCφ ,

sbφ
∗ =+ieφ∗C , sbB= 0 , sbB = 0 , sbE= 0 ,

sb(∂ ·A) =�C , sabAµ = ∂µC̄ , sabC̄ = 0 ,

sabC =−iB , sabφ=−ieC̄φ , sabφ
∗ =+ieφ∗C̄ ,

sabB= 0 , sabB = 0 , sabE= 0 , sab(∂ ·A) =�C̄ .
(4)

The key points to be noted, at this stage, are as follows.

(i) Under the (anti-) BRST transformations, it is the ki-
netic energy term (− 14F

µνFµν) of the gauge field Aµ
which remains invariant. This statement is true for
any (non-) Abelian gauge theory. For the above U(1)
gauge theory, as it turns out, it is the curvature term
Fµν (constructed from the operation of the exterior
derivative d = dxµ∂µ on the 1-formA

(1) =dxµAµ) it-
self that remains invariant under the (anti-) BRST
transformations.

(ii) In the mathematical language, the (anti-) BRST
symmetries owe their origin to the exterior derivative
d = dxµ∂µ because the curvature term is constructed
from it.

(iii) This observation will be exploited in the next sec-
tion where (super) exterior derivatives would play
very decisive roles in the derivation of the exact nilpo-
tent (anti-) BRST transformations for the gauge and
(anti-) ghost fields in the framework of usual super-
field formalism.

(iv) In general, the above transformations can be con-
cisely expressed in terms of the generic fieldΣ(x) and
the conserved chargesQ(a)b, as

srΣ(x) =−i
[
Σ(x), Qr

]
±
, r = b, ab , (5)

where the local generic field Σ = Aµ, C, C̄, B, φ, φ
∗

and the (+)− signs, as the subscripts on the square
bracket [, ]±, stand for the (anti)commutators for
Σ being (fermionic) bosonic in nature. The explicit
forms of the conserved and nilpotent charges Q(a)b
are not required for our present discussions but can
be derived by exploiting the Noether theorem.

3 We follow here the notations and conventions adopted
in [5, 6]. In fact, the (anti-) BRST prescription is to replace
the local gauge parameter by an anticommuting number η and
the (anti-) ghost fields (C̄)C which anticommute (i.e. ηC+
Cη = 0, ηC̄+ C̄η = 0) and commute (i.e. ηB =Bη, ηAµ =Aµη,

etc.) with all the fermionic (i.e. CC̄+ C̄C = 0, C2 = C̄2 = 0,
etc.) and bosonic (i.e. B,Aµ, B

2 �= 0, etc.) fields, respectively.
In its totality, the nilpotent (δ2(A)B = 0) (anti-) BRST trans-

formations δ(A)B are the product (i.e. δ(A)B = ηs(a)b) of η and
s(a)b where the nilpotency property is carried by s(a)b (with

s2(a)b = 0).

3 Nilpotent symmetries for the gauge-field
and (anti-) ghost fields: Usual superfield
formalism with horizontality condition

To obtain the off-shell nilpotent symmetry transform-
ations (4) for the U(1) gauge field (Aµ) and anticommuting
(anti-) ghost fields ((C̄)C) in the usual superfield formal-
ism, we define the 4D ordinary interacting gauge theory
on a six (4, 2)-dimensional supermanifold parametrized by
the general superspace coordinate ZM = (xµ, θ, θ̄) where
xµ(µ = 0, 1, 2, 3) are the four even spacetime coordinates
and θ, θ̄ are a couple of odd elements of a Grassmann
algebra. On this supermanifold, one can define a super
1-form connection Ã(1) = dZM (ÃM ) with the supervector
superfield ÃM ≡ (Bµ(x, θ, θ̄),F(x, θ, θ̄), F̄(x, θ, θ̄)). Here
Bµ,F , F̄ are the component multiplet superfields, where
Bµ is an even superfield and F , F̄ are the odd super-
fields [18–21]. These multiplet superfields can be expanded
in terms of the basic fields Aµ, C, C̄, auxiliary multiplier
field B and some secondary fields as (see, e.g., [18–21])

Bµ(x, θ, θ̄) =Aµ(x)+ θR̄µ(x)+ θ̄Rµ(x)+ iθθ̄Sµ(x) ,

F(x, θ, θ̄) = C(x)+ iθB̄(x)+ iθ̄B(x)+ iθθ̄s(x) ,

F̄(x, θ, θ̄) = C̄(x)+ iθB̄(x)+ iθ̄B(x)+ iθθ̄s̄(x) . (6)

It is straightforward to note that the local fields Rµ(x),
R̄µ(x), C(x), C̄(x), s(x), s̄(x) are fermionic (anticommut-
ing) and Aµ(x), Sµ(x),B(x), B̄(x), B(x), B̄(x) are bosonic
(commuting) in nature. In the above expansion, the
bosonic and fermionic degrees of freedommatch and, in the
limit θ, θ̄→ 0, we get back our basic gauge and (anti-) ghost
fields Aµ, C, C̄ of (1) and/or (3). These requirements are
essential for the sanctity of any arbitrary supersymmetric
theory in the superfield formulation. In fact, all the sec-
ondary fields will be expressed in terms of basic fields (and
auxiliary field B) due to the restrictions emerging from

the application of horizontality condition (i.e. F̃ (2) = F (2)),
namely

1

2
(dZM ∧dZN )F̃MN = d̃Ã

(1) ≡ dA(1) =
1

2
(dxµ∧dxν)Fµν ,

(7)

where the super exterior derivative d̃ and the connection
super one-form Ã(1) are defined as

d̃ = dZM∂M = dx
µ∂µ+dθ∂θ+dθ̄∂θ̄ ,

Ã(1) = dZM ÃM

= dxµBµ(x, θ, θ̄)+dθF̄(x, θ, θ̄)+dθ̄F(x, θ, θ̄) .
(8)

To observe the impact of (7), let us first expand d̃Ã(1) as

d̃Ã(1) = (dxµ∧dxν)(∂µBν)− (dθ∧dθ)(∂θF̄)

+ (dxµ∧dθ̄)(∂µF −∂θ̄Bµ)− (dθ∧dθ̄)(∂θF +∂θ̄F̄)

+ (dxµ∧dθ)(∂µF̄ −∂θBµ)− (dθ̄∧dθ̄)(∂θ̄F) . (9)

We shall apply now the horizontality condition (7) to ob-
tain the nilpotent symmetry transformations (4) for the
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gauge and (anti-) ghost fields. This is expected. It can be
recalled that we have laid the emphasis on the role of the
nilpotent (d2 = 0) exterior derivative d = dxµ∂µ for the ori-
gin of the (anti-) BRST symmetry transformations which
leave the Fµν of the 2-form F

(2) = dA(1) invariant (cf. the
discussion after (4)). It will be noted, furthermore, that the
kinetic energy of the U(1) gauge field is constructed from
the 2-formF (2). In fact, the application of the horizontality
condition yields [26]

Rµ(x) = ∂µC(x) , R̄µ(x) = ∂µC̄(x) , s(x) = s̄(x) = 0 ,

Sµ(x) = ∂µB(x) , B(x)+ B̄(x) = 0 , B(x) = B̄(x) = 0 .
(10)

The insertion of all the above values in the expansion (6)
yields

B(h)µ (x, θ, θ̄) =Aµ(x)+ θ∂µC̄(x)+ θ̄∂µC(x)+ iθθ̄∂µB(x) ,

F (h)(x, θ, θ̄) = C(x)− iθB(x) ,

F̄ (h)(x, θ, θ̄) = C̄(x)+ iθ̄B(x) . (11)

This equation leads to the derivation of the (anti-) BRST
symmetries for the gauge and (anti-) ghost fields of the
Abelian gauge theory (cf. (4)). In addition, this exercise
provides the physical interpretation for the (anti-) BRST
chargesQ(a)b as the generators (cf. (5)) of translations (i.e.
limθ̄→0(∂/∂θ), limθ→0(∂/∂θ̄)) along the Grassmannian di-
rections of the supermanifold. Both these observations can
be succinctly expressed, in a combined fashion, by re-
writing the super expansion (6) as

B(h)µ (x, θ, θ̄) =Aµ(x)+ θ(sabAµ(x))+ θ̄(sbAµ(x))

+ θθ̄(sbsabAµ(x)) ,

F (h)(x, θ, θ̄) = C(x)+ θ(sabC(x))+ θ̄(sbC(x))

+ θθ̄(sbsabC(x)) ,

F̄ (h)(x, θ, θ̄) = C̄(x)+ θ(sabC̄(x))+ θ̄(sbC̄(x))

+ θθ̄(sbsabC̄(x)) . (12)

In other words, after the application of the horizontal-
ity condition (7), we obtain the super 1-form connection

Ã
(1)
(h) (as Ã

(1)
(h) = dx

µB
(h)
µ +dθF̄ (h)+dθ̄F (h)) such that

d̃Ã
(1)
(h) = dA is readily satisfied. It is clear from (11) that

the horizontality condition enforces the fermionic super-
fields (F̄(x, θ, θ̄))F(x, θ, θ̄) to become (anti-) chiral due to
the equivalence between the translation generators operat-
ing on superfields of the supermanifold and the nilpotent
symmetry transformations s(a)b acting on the local fields
(cf. (5)) of the ordinary manifold.

4 Unique nilpotent symmetries
for the complex scalar fields:
Augmented superfield formalism
with a gauge-invariant restriction

In this section, we derive the exact and unique nilpotent
(anti-) BRST symmetry transformations for the complex

scalar fields in QED by exploiting a gauge-invariant re-
striction on the six (4, 2)-dimensional supermanifold. In
this gauge-invariant restriction, once again, d̃ and Ã(h) are
going to play crucial roles. Thus, there is a mathematically
beautiful interplay between the horizontality restriction
and this new restriction. In fact, the new restriction turns
out to be complementary in nature to the horizontality
condition. To corroborate this assertion, let us begin with
this new gauge-invariant restriction on the supermanifold

Φ∗(x, θ, θ̄)(d̃+ ieÃ
(1)
(h))Φ(x, θ, θ̄) = φ

∗(x)(d+ ieA(1))φ(x) ,

(13)

where Ã
(1)
(h) = dx

µB
(h)
µ +dθF̄ (h)+dθ̄F (h) with superfield

expansions for the multiplet superfields as quoted in (11)
and the super expansion for the superfields Φ(x, θ, θ̄) and
Φ∗(x, θ, θ̄), corresponding to the basic matter fields φ(x)
and φ∗(x), are

Φ(x, θ, θ̄) = φ(x)+ iθf̄1(x)+ iθ̄f2(x)+ iθθ̄b(x) ,

Φ∗(x, θ, θ̄) = φ∗(x)+ iθf̄∗2 (x)+ iθ̄f
∗
1 (x)+ iθθ̄b̄

∗(x) ,
(14)

where the number of fermionic secondary fields f̄1(x),
f∗1 (x), f2(x), f̄

∗
2 (x) do match with the number of bosonic

secondary fields φ(x), φ∗(x), b(x), b̄∗(x) to maintain one of
the basic requirements of a supersymmetric field theory.
In the limit (θ, θ̄)→ 0, we retrieve the local starting ba-
sic complex scalar fields φ(x) and φ∗(x). It is evident that
the r.h.s. (i.e. dxµφ∗(∂µ+ieAµ)φ) of (13) is a U(1) gauge-
invariant term. The first term on the l.h.s. of (13) has the
following expansion:

Φ∗(x, θ, θ̄)d̃Φ(x, θ, θ̄) = Φ∗(x, θ, θ̄)(dxµ∂µ+dθ∂θ+dθ̄∂θ̄)

×Φ(x, θ, θ̄) . (15)

It is straightforward to note that ∂θΦ = if̄1+iθ̄b, ∂θ̄Φ =
if2− iθb if we take into account the expansion (14) for Φ.
The second term on the l.h.s. of (13) can be expressed as

Φ∗(x, θ, θ̄)Ã
(1)
(h)Φ(x, θ, θ̄) = Φ

∗(x, θ, θ̄)(dxµB(h)µ +dθF̄
(h)

+dθ̄F (h))Φ(x, θ, θ̄) . (16)

It is clear that, from the above two equations, we shall ob-
tain the coefficients of the differentials dxµ,dθ and dθ̄. It is
convenient algebraically to first focus on the coefficients of
dθ and dθ̄ that emerge from (15) and (16). In explicit form,
the former (i.e. (15)) leads to the following expressions in
terms of the differentials dθ and dθ̄

dθ
[(
iφ∗f̄1

)
− θ
(
f̄∗2 f̄1
)
− θ̄
(
f∗1 f̄1− iφ

∗b
)
+ θθ̄

(
f̄∗2 b− b̄

∗f̄1
)]
,

(17)

dθ̄
[
(iφ∗f2)− θ (f

∗
2 f2+iφ

∗b)− θ̄ (f∗1 f2)+ θθ̄
(
f∗1 b− b̄

∗f2
)]
.

(18)
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The analogues of the above expressions that emerge from
(16) are

iedθ
[(
φ∗C̄φ

)
+iθ
(
f̄∗2 C̄φ−φ

∗C̄f̄1
)

+iθ̄
(
φ∗Bφ−φ∗C̄f2+f

∗
1 C̄φ
)

+ θθ̄
{
f̄∗2Bφ− f̄

∗
2 C̄f2+ f̄

∗
1 C̄f̄1+φ

∗Bf̄1

+i
(
b̄∗C̄φ+φ∗C̄b

)}]
, (19)

iedθ̄
[
(φ∗Cφ)+ iθ

(
f̄∗2Cφ−φ

∗Cf̄1−φ
∗Bφ
)

+iθ̄ (f∗1Cφ−φ
∗Cf2)

+ θθ̄
{
φ∗Bf2− f̄

∗
2Cf2+f

∗
1Cf̄1+f

∗
1Bφ

+i
(
b̄∗Cφ+φ∗Cb

)}]
. (20)

Finally, collecting the coefficients of dθ and dθ̄ from the
above four equations, we obtain

dθ
[
i
(
φ∗f̄1+ eφ

∗C̄φ
)
− θ
(
f̄∗2 f̄1+ ef̄

∗
2 C̄φ− eφ

∗C̄f̄1
)

+ θ̄
(
iφ∗b−f∗1 f̄1+ eφ

∗C̄f2− ef
∗
1 C̄φ− eφ

∗Bφ
)

+ θθ̄
[
f̄∗2 b− b̄

∗f̄1+ie
{
f̄∗2Bφ− f̄

∗
2 C̄f2+ f̄

∗
1 C̄f̄1+φ

∗Bf̄1

+i
(
b̄∗C̄φ+φ∗C̄b

)}]]
, (21)

dθ̄
[
i (φ∗f2+ eφ

∗Cφ)

− θ
(
f∗2 f2+iφ

∗b+ ef∗2Cφ− eφ
∗Cf̄1− eφ

∗Bφ
)

− θ̄ (f∗1 f2− eφ
∗Cf2+ ef

∗
1Cφ)+ θθ̄

[
f∗1 b− b̄

∗f2

+ie
{
f∗1Bφ− f̄

∗
2Cf2+f

∗
1Cf̄1+φ

∗Bf2

+i
(
b̄∗Cφ+φ∗Cb

)}]]
. (22)

Setting equal to zero the coefficients of dθ,dθ(θ),dθ(θ̄) and
dθ(θθ̄) separately and independently, we obtain the follow-
ing four relations (for φ∗ �= 0):

f̄1 =−eC̄φ, C̄f̄1 = 0, b=−ie
(
Bφ− C̄f2

)
,

f̄∗2
(
b+ieBφ− ieC̄f2

)
+
(
−b̄∗+ief̄∗1 C̄+ieφ

∗B
)
f̄1

− e
(
b̄∗C̄φ+φ∗C̄b

)
= 0 . (23)

In an exactly similar fashion, the equality of the coefficients
of dθ̄,dθ̄(θ),dθ̄(θ̄) and dθ̄(θθ̄) to zero leads to the following
relations (for φ∗ �= 0):

f2 =−eCφ, b=−ie
(
Bφ+Cf̄1

)
, Cf2 = 0,

f∗1
(
b+ieCf̄1+ieBφ

)
− b̄∗
(
f2+ eCφ

)

+ieφ∗Bf2− eφ
∗Cb= 0 . (24)

With f2 =−eCφ, f̄1 =−eC̄φ as inputs, it is clear that (23)
and (24) lead to b = −ie(B+ eC̄C)φ. Furthermore, it is
straightforward to note that C̄f̄1 = 0 andCf2 = 0 are auto-
matically satisfied and the last entries of (23) and (24) are
also consistent with the above values of f̄1, f2 and b. Thus,
the independent relations that emerge from the compari-
son of the coefficients of dθ and dθ̄ of the l.h.s. and the r.h.s.
of (13) are

f̄1 =−eC̄φ, f2 =−eCφ, b=−ie
(
B+ eC̄C

)
φ ,

(25)

which lead to the expansion of the superfield Φ(x, θ, θ̄), in
terms of the (anti-) BRST transformations s(a)b of (4) for
the scalar field φ(x), as follows:

Φ(x, θ, θ̄)= φ(x)+ θ(sabφ(x))+ θ̄(sbφ(x))+ θθ̄(sbsabφ(x)) .
(26)

Now let us concentrate on the computation of the coef-
ficients of dxµ from the l.h.s. of (13). Written in an explicit
form, these terms are

dxµ
[
Φ∗∂µΦ+ieΦ

∗B(h)µ Φ
]
. (27)

The first term of the above equation contributes to the
following:

dxµ
[
(φ∗∂µφ)+ iθ

(
φ∗∂µf̄1+ f̄

∗
2∂µφ

)
+iθ̄ (φ∗∂µf2+f

∗
1∂µφ)

+ iθθ̄
(
φ∗∂µb+ b̄

∗∂µφ+if
∗
1 ∂µf̄1− if̄

∗
2∂µf2

)]
. (28)

On the other hand, such a contribution coming from the
second term is

dxµ
[
(ieφ∗Aµφ)− eθ(Kµ)− eθ̄(Lµ)− eθθ̄(Mµ)

]
,

(29)

where the exact and explicit expressions for Kµ, Lµ and
Mµ are

Kµ = φ
∗Aµf̄1− iφ

∗∂µC̄φ+ f̄
∗
2Aµφ ,

Lµ = φ
∗Aµf2− iφ

∗∂µCφ+f
∗
1Aµφ ,

Mµ = φ
∗Aµb+φ

∗∂µBφ+φ
∗∂µCf̄1−φ

∗∂µC̄f2+ b̄
∗Aµφ

+f∗1∂µC̄φ− f̄
∗
2∂µCφ+if

∗
1Aµf̄1− if̄

∗
2Aµf2 . (30)

It is now evident that the coefficient of the pure differential
dxµ from the l.h.s. does match with that of the r.h.s. (i.e.
dxµφ∗(∂µ+ieAµ)φ). Collecting the coefficients of dx

µ(θ)
and dxµ(θ̄) from (28), (29) and (30), we obtain the follow-
ing expressions:

iφ∗∂µf̄1+if̄
∗
2 ∂µφ− ef̄

∗
2Aµφ− eφ

∗Aµf̄1+ieφ
∗∂µC̄φ ,

(31)

iφ∗∂µf2+if
∗
1 ∂µφ− ef

∗
1Aµφ− eφ

∗Aµf2+ieφ
∗∂µCφ .

(32)

Exploiting the inputs from (25) and setting equal to zero
the above coefficients (31) and (32), we obtain the follow-
ing relations:

i
(
f̄∗2 − eφ

∗C̄
)
(Dµφ) = 0, i

(
f∗1 − eφ

∗C
)
(Dµφ) = 0 .

(33)

It is obvious from our interacting gauge system that
Dµφ �= 0. Thus, we obtain the exact expressions for the
secondary fields of the expansion in (14): f̄∗2 = eφ

∗C̄, f∗1 =
eφ∗C. The collection of the coefficients of dxµ(θθ̄) from
(28), (29) and (30) yields

i
(
φ∗∂µb+ b̄

∗∂µφ
)
−f∗1∂µf̄1+ f̄

∗
2∂µf2− eφ

∗Aµb

− eφ∗∂µBφ− ef
∗
1∂µC̄φ+ie

(
f̄∗2Aµf2−f

∗
1Aµf̄1

)

− eφ∗∂µCf̄1+ eφ
∗∂µC̄f2+ ef̄

∗
2∂µCφ− eb̄

∗Aµφ .

(34)
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The substitution of the values of the secondary fields
f∗1 , f̄

∗
2 , b, f̄1, f2 in terms of the basic fields, in the above

expression, finally leads to

i
[
b̄∗− ie(B+ eCC̄)φ∗

]
(Dµφ) , (35)

which should be logically set equal to zero because there is
no term corresponding to it on the r.h.s. of (13). Thus, we
obtain the neat expression for b̄∗: b̄∗ = ie(B+ eCC̄)φ∗ for
Dµφ �= 0. This establishes the fact that all the secondary
fields of the super expansion of Φ∗(x, θ, θ̄) can be expressed
uniquely in terms of the basic and auxiliary fields due to
the constraint (13) on the supermanifold. The insertion
of these values in (14) leads to the following expansion of
Φ∗(x, θ, θ̄) in terms of the transformations (4):

Φ∗(x, θ, θ̄) = φ∗(x)+ θ (sabφ
∗(x))+ θ̄ (sbφ

∗(x))

+ θθ̄ (sbsabφ
∗(x)) . (36)

Let us begin with an alternative version of the gauge-
invariant restriction (13) on the supermanifold. This re-

striction, in terms of d̃ and Ã
(1)
(h), can be expressed as

follows:

Φ(x, θ, θ̄)(d̃− ieÃ(1)(h))Φ
∗(x, θ, θ̄) = φ(x)(d− ieA(1))φ∗(x) ,

(37)

where the r.h.s. of the above equation contains a single dif-
ferential dxµ which can be explicitly written as: dxµφ(∂µ−
ieAµ)φ

∗. It is evident from the r.h.s (i.e. dxµ[φ(Dµφ)
∗])

that the above restriction is really a gauge-invariant re-
striction. The first term (Φd̃Φ∗) on the l.h.s. of (37) leads to
the following expansion:

Φd̃Φ∗ = dxµΦ∂µΦ
∗+dθΦ∂θΦ

∗+dθ̄Φ∂θ̄Φ
∗ , (38)

where ∂θΦ
∗ = if̄∗2 +iθ̄b̄

∗, ∂θ̄Φ
∗ = if∗1 − iθb̄

∗. Collecting first
the coefficients of dθ and dθ̄ from the above expression, we
obtain

dθ
[(
iφf̄∗2
)
− θ
(
f̄1f̄

∗
2

)
− θ̄
(
f2f̄

∗
2 − iφb̄

∗
)
+ θθ̄

(
f̄1b̄
∗− bf̄∗2

)]
,

(39)

dθ̄
[
(iφf∗1 )− θ

(
f̄1f

∗
1 +iφb̄

∗
)
− θ̄ (f2f

∗
1 )+ θθ̄

(
f2b̄
∗− bf∗1

)]
.

(40)

The second term −ieΦÃ(1)(h)Φ
∗ =−ieΦ(dxµB(h)µ +dθF̄ (h)+

dθ̄F (h))Φ∗ of the l.h.s. of (37) yields the following coeffi-
cients of the differentials dθ and dθ̄:

− iedθ
[(
φC̄φ∗

)
+iθ
(
f̄1C̄φ

∗−φC̄f̄∗2
)

+iθ̄
(
f2C̄φ

∗−φC̄f∗1 +φBφ
∗
)

+iθθ̄
(
bC̄φ∗+φC̄b̄∗− iφBf̄∗2 +if̄1C̄f

∗
1

− if̄1Bφ
∗− if2C̄f̄

∗
2

)]
, (41)

− iedθ̄
[
(φCφ∗)+ iθ

(
f̄1Cφ

∗−φCf̄∗2 −φBφ
∗
)

+iθ̄ (f2Cφ
∗−φCf∗1 )

+ iθθ̄
(
bCφ∗+φCb̄∗− iφBf∗1 +if̄1Cf

∗
1

− if2Bφ
∗− if2Cf̄

∗
2

)]
, (42)

where explicit expressions for the superfields F̄ (h) andF (h)

have been taken into account from (11). Setting equal to
zero the coefficients of dθ,dθ(θ),dθ(θ̄) and dθ(θθ̄) from the
above four expressions, we obtain the following relation-
ships (for φ �= 0):

f̄∗2 = eC̄φ
∗ , C̄f̄∗2 = 0 , b̄

∗ = ie(Bφ∗− C̄f∗1 ) ,

(f̄1+ eφC̄)b̄
∗− ie2BC̄φ∗+ief̄1(C̄f

∗
1 −Bφ

∗) = 0 .
(43)

Similarly, equating the coefficients of dθ̄,dθ̄(θ),dθ̄(θ̄) and
dθ̄(θθ̄) to zero yields (for φ �= 0)

f∗1 = eCφ
∗ , b̄∗ = ie(B+ eCC̄)φ∗ , Cf∗1 = 0 ,

(f2+ eφC)b̄
∗− ief2(Cf̄

∗
2 +Bφ

∗)− ieφBf∗1 = 0 , (44)

where, at some places, f∗1 = eCφ
∗, f̄∗2 = eC̄φ

∗ have already
been used. Finally, we obtain the following independent
relations4

f∗1 = eCφ
∗, f̄∗2 = eC̄φ

∗, b̄∗ = ie(B+ eCC̄)φ∗ .
(45)

All the other relations in (43) and (44) are automati-
cally satisfied. To compute the coefficients of dxµ from
the l.h.s. of the (37), we have to focus on [dxµ(Φ∂µΦ

∗)]

and ie[dxµ(ΦB
(h)
µ Φ∗)]. The former leads to the following

expression:

dxµ
[
(φ∂µφ

∗)+ iθ
(
φ∂µf̄

∗
2 + f̄1∂µφ

∗
)
+iθ̄ (φ∂µf

∗
1 +f2∂µφ

∗)

+ iθθ̄
(
φ∂µb̄

∗+ b∂µφ
∗+if2∂µf̄

∗
2 − if̄1∂µf

∗
1

)]
, (46)

and the latter term yields

−iedxµ
[
(φAµφ

∗)+ iθ(Uµ)+ iθ̄(Vµ)+ iθθ̄(Wµ)
]
, (47)

where the explicit expressions for Uµ, Vµ and Wµ are as
follows:

Uµ = φAµf̄
∗
2 − iφ∂µC̄φ

∗+ f̄1Aµφ
∗,

Vµ = φAµf
∗
1 − iφ∂µCφ

∗+f2Aµφ
∗,

Wµ = φAµ b̄
∗+φ∂µBφ

∗+φ∂µCf̄
∗
2 −φ∂µC̄f

∗
1 + bAµφ

∗

+f2∂µC̄φ
∗− f̄1∂µCφ

∗+if2Aµf̄
∗
2 − if̄1Aµf

∗
1 .
(48)

It is evident that when we collect the coefficient of the
“pure” dxµ from (46) and (47), it exactly matches with the
r.h.s. (i.e. dxµφ(Dµφ)

∗). Setting the coefficients of dxµ(θ)

4 It should be noted that exactly the same results, as quoted
in (45), can be obtained from the covariant version (A.1) of
the restriction (37) where the dθ and dθ̄ components lead
to these derivations. However, the components dxµ(θ),dxµ(θ̄)
and dxµ(θθ̄) from (A.1) lead to the result (i.e. (Dµφ)

∗ = 0)
which is found to be repugnant to the key requirement of the
present interacting theory (QED) where (Dµφ)

∗ �= 0.
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and dxµ(θ̄) from the l.h.s. of (37) equal to zero leads to the
following equations:

i
(
f̄1+ eφC̄

)
(Dµφ)

∗ = 0, i
(
f2+ eφC

)
(Dµφ)

∗ = 0 ,
(49)

where we have used the inputs from (45). It is obvious
from our present theory of QED that (Dµφ)

∗ �= 0. Thus,
we obtain f̄1 = −eC̄φ, f2 = −eCφ from (49). Finally, we
set equal to zero the coefficient of dxµ(θθ̄) that emerges
from (46), (47) and (48). We use in this computation the
expressions given in (45) and the values of f̄1 and f2. Ulti-
mately, we obtain the following equation:

[
ib+ e(B+ eC̄C)φ

]
(Dµφ)

∗ = 0 , (50)

which leads to the derivation of b: b=−ie(B+ eC̄C)φ for
(Dµφ)

∗ �= 0. Thus, we establish that the secondary fields
of the expansion (14) can also be determined exactly and
uniquely in terms of the basic and auxiliary fields of the
theory if we exploit the gauge-invariant restriction (37)
on the six (4, 2)-dimensional supermanifold. Finally, these
values (either derived from (13) or (37)) lead to the expan-
sion of the super matter fields as given in (26) and (36)
in terms of off-shell nilpotent transformations s(a)b listed
in (4).

5 Conclusions

In our present endeavour, we have exploited the gauge-
invariant restrictions (cf. (13) and (37)) on the six (4, 2)-
dimensional supermanifold to compute exactly and
uniquely the off-shell nilpotent (anti-) BRST symmetry
transformations (cf. (4)) for the complex scalar fields that
are coupled to the 1-form U(1) gauge field Aµ in a dynam-
ically closed manner. The above gauge-invariant restric-
tions owe their origin to the (super) covariant derivatives
defined on the supermanifolds. Thus, we have been able to
provide a unique resolution to an outstanding problem in
the context of the superfield approach to the BRST for-
malism. It is worthwhile to lay emphasis on the fact that
the covariant versions (cf. (A.1) and the associated foot-
note) of the above gauge-invariant restrictions do not lead
to the exact and acceptable derivation of the nilpotent
(anti-) BRST symmetry transformations for the complex
scalar fields of a 4D interacting U(1) gauge theory in
a logical fashion. This fact has been discussed in detail in
Appendix.
We would like to lay stress on the fact that the usual

horizontality condition F̃ (2) = F (2) (cf. (7)), responsible
for the exact derivation of the nilpotent (anti-) BRST
symmetry transformations for the gauge and (anti-) ghost
fields, is basically a covariant restriction on the super-
manifold. This is because of the fact that, for the non-
Abelian gauge theory, the 2-form F (2) transforms as
F (2) → (F (2))′ = UF (2)U−1, where U is the Lie group
valued gauge transformation corresponding to the non-
Abelian gauge theory under consideration (see. e.g. [6, 7]
for details). It is merely an interesting coincidence that, for

the interacting U(1) gauge theory (i.e. QED), the above
covariant transformation of the 2-form F (2) reduces to
a gauge-invariant transformation. It will be noted, how-
ever, that the derivation of the exact nilpotent (anti-)
BRST symmetry transformations for the matter fields, de-
pends only on the gauge-invariant restriction defined on
the supermanifold and its covariant version leads to mis-
leading results (cf. the appendix). This discrepancy is an
important point in our whole discussion of the augmented
superfield approach to the BRST formalism.
In our earlier works [25–31], we have proposed a con-

sistent extension of the usual superfield formulation where,
in addition to the horizontality condition, the restrictions
emerging from the equality of the conserved quantities
have been tapped on the supermanifold for the consis-
tent derivation of the nilpotent symmetry transformations
for the matter fields and other fields of the theory (see,
e.g., [31] for details). However, these transformations for
the matter (and other relevant) fields have not turned out
to be unique. This is why our present work is important, in
the sense that, we are able to derive all the nilpotent sym-
metry transformations together for the gauge, matter and
(anti-) ghost fields in a unique manner. The restrictions in
our present work are such that

(i) they owe their origin to the (super) exterior deriva-
tives (d̃) d and (super) 1-form connections (Ã(1))
A(1),

(ii) there is a mutual consistency and complementarity
between these restrictions, in the sense that, the ge-
ometrical interpretations for s(a)b and Q(a)b remain
intact, and

(iii) they form the key ingredients of the theoretical arse-
nal of the augmented superfield approach to BRST
formalism.

Our earlier works [25–32] and the present work are
christened as the augmented superfield formalism because
they turn out to be the consistent extensions, and in some
sense generalizations, of the usual superfield approach to
BRST formalism.
We have exploited the key ideas of the augmented su-

perfield approach to the BRST formalism for the deriva-
tion of the unique nilpotent symmetry transformations for
the Dirac fields in an interacting U(1) gauge theory where
the Abelian gauge field Aµ couples to the matter con-
served current constructed by the Dirac fields alone [32].
A natural extension of our present work (and the earlier
works [25–32]) is to check the validity of our proposal in
the case of an interacting non-Abelian gauge theory [35]
which is certainly a more general interacting system than
the interacting Abelian gauge theories (i.e. QED). Fur-
thermore, it would be a very nice endeavour to obtain the
nilpotent symmetry transformations for all the fields of
an interacting gauge theory by exploiting a single restric-
tion on the supermanifold. We have been able to achieve
that for the 4D interacting 1-form (non-) Abelian gauge
theories by exploiting a gauge-invariant restriction that is
found to owe its origin to a couple of covariant deriva-
tives and their intimate connection with the curvature 2-
form of the 1-form gauge fields [35–37]. It is worthwhile
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to note that the usual superfield formalism has also been
exploited in obtaining the nilpotent (anti-) BRST symme-
tries for the gauge and (anti-) ghost fields in the context of
gravitational theories [18, 19]. It would be a very interest-
ing venture to find out the usefulness of our proposal for
the gravitational theories where matter fields (especially
fermions) are in interaction with the gravitational (tetrad)
fields. This issue is being intensively investigated at the
moment and our results will be reported in our forthcom-
ing future publications [38].
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Appendix

Let us begin with the following gauge covariant restriction
on the six (4, 2)-dimensional supermanifold5:

(
d̃− ieÃ(1)(h)

)
Φ∗
(
x, θ, θ̄

)
=
(
d− ieA(1)

)
φ∗(x) ,

(A.1)

where the r.h.s. of the above equation is a single term (i.e.
dxµ[∂µφ

∗(x)− ieAµφ∗(x)]) with the spacetime differential

dxµ alone and Ã
(1)
(h) = dx

µB
(h)
µ +dθF̄ (h)+dθ̄F (h) is the

super 1-form connection after the application of the hori-
zontality condition (cf. (11)). The expanded version of the
l.h.s., however, contains the differentials dxµ, dθ and dθ̄
and their coefficients. In fact, the first term of the l.h.s.
of (A.1) yields

d̃Φ∗(x, θ, θ̄) = dxµ∂µΦ
∗+dθ∂θΦ

∗+dθ̄∂θ̄Φ
∗ . (A.2)

It is clear from the expansion (14) that ∂θΦ
∗ = if̄∗2 +iθ̄b̄

∗

and ∂θ̄Φ
∗ = if∗1 − iθb̄

∗. The second term of the l.h.s. of (A.1)
can be written as

−ieÃ(1)(h)Φ
∗ =−iedxµB(h)µ Φ

∗− iedθF̄ (h)Φ∗− iedθ̄F (h)Φ∗ .

(A.3)

It is evident from (A.2) and (A.3) that we shall have the co-
efficients of dxµ, dθ and dθ̄ from both the terms of the l.h.s.
of (A.1). Let us, first of all, focus on the coefficients of dθ

5 There exists another analogous gauge covariant restric-

tion (d̃+ ieÃ
(1)
(h)
)Φ(x, θ, θ̄) = (d+ ieA(1))φ(x) on the six (4, 2)-

dimensional supermanifold that leads to similar kinds of con-
clusions as drawn from (A.1). The computational steps for the
former are exactly the same as that of the latter (i.e. (A.1)).
In fact, as it turns out, in this restriction, different from (A.1),
one obtains the unacceptable result which implies thatDµφ= 0
for e �= 0, C �= 0, C̄ �= 0. This is not the case, however, for the
present QED under consideration.

and dθ̄. These are listed here:

dθ
[(
if̄∗2 − ieC̄φ

∗
)
− θ
(
eC̄f̄∗2

)
+ θ̄
(
ib̄∗+ eBφ∗− eC̄f∗1

)

+ θθ̄
(
eC̄b̄∗− ieBf̄∗2

)]
, (A.4)

dθ̄
[
(if∗1 − ieCφ

∗)− θ
(
ib̄∗+ eBφ∗+ eCf̄∗2

)
− θ̄
(
eCf∗1

)

+ θθ̄
(
eCb̄∗− ieBf∗1

)]
. (A.5)

Setting equal to zero the coefficients of dθ,dθ(θ),dθ(θ̄) and
dθ(θθ̄) separately and independently leads to the following
relationships (for e �= 0):

f̄∗2 = eC̄φ
∗, C̄f̄∗2 = 0 ,

b̄∗ =−ie[C̄f∗1 −Bφ
∗], C̄b̄∗ = iBf̄∗2 . (A.6)

It is straightforward to check that the second entry and the
fourth entry, in the above equation, are satisfied due to the
first entry and the third entry, respectively. The equality of
the coefficients of dθ̄,dθ̄(θ),dθ̄(θ̄) and dθ̄(θθ̄) to zero, leads
(for e �= 0) to

f∗1 = eCφ
∗, b̄∗ =+ie

[
Cf̄∗2 +Bφ

∗
]
,

Cf∗1 = 0, Cb̄
∗ = iBf∗1 . (A.7)

Ultimately, (A.6) and (A.7) imply

f∗1 = eCφ
∗, f̄∗2 = eC̄φ

∗, b̄∗ =+ie[B+ eCC̄]φ∗ .
(A.8)

Let us concentrate on the computation of the coefficients
of dxµ,dxµ(θ),dxµ(θ̄) and dxµ(θθ̄) that emerge from the
l.h.s. of (A.1). It is elementary to check that

dxµ∂µΦ
∗ = dxµ

[
∂µφ

∗+iθ∂µf̄
∗
2 +iθ̄∂µf

∗
1 +iθθ̄∂µb̄

∗
]
.

(A.9)

The second term −iedxµ(B(h)µ Φ∗) of the l.h.s. can be ex-
panded as follows:

− iedxµ
[
Aµφ

∗+iθ
(
Aµf̄

∗
2 − i∂µC̄φ

∗
)
+iθ̄
(
Aµf

∗
1 − i∂µCφ

∗
)

+iθθ̄
(
∂µBφ

∗+Aµb̄
∗+∂µCf̄

∗
2 −∂µC̄f

∗
1

)]
. (A.10)

It is quite obvious that the coefficient of the “pure” dxµ of
the l.h.s. matches with that of the r.h.s in (A.1). Setting
equal to zero the coefficients of dxµθ,dxµθ̄ and dxµ(θθ̄)
leads to

i∂µf̄
∗
2 + eAµf̄

∗
2 − ie∂µC̄φ

∗ = 0 ,

i∂µf
∗
1 + eAµf

∗
1 − ie∂µCφ

∗ = 0 ,

i∂µb̄
∗+ e
(
∂µBφ

∗+Aµb̄
∗+∂µCf̄

∗
2 −∂µC̄f

∗
1

)
= 0 .
(A.11)

Inserting the values of f∗1 , f̄
∗
2 and b̄

∗ in the above from
(A.8), we obtain

ieC̄(Dµφ)
∗ = 0, ieC(Dµφ)

∗ = 0 ,

− e(B+ eCC̄)(Dµφ)
∗ = 0 . (A.12)
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The above conditions lead to the absurd result that
(Dµφ)

∗ = 0 for e �= 0, C �= 0, C̄ �= 0. One cannot choose
B = −eCC̄ in the last condition of (A.12) because that
would lead to the condition that b̄∗ = 0. This is not the case
as can be seen from the expansion (36).
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